Level sets of Neumann eigenfunctions
نویسندگان
چکیده
In this paper we prove that the level sets of the first non–constant eigenfunction of the Neumann Laplacian on a convex planar domain have only finitely many connected components. This problem is motivated, in part, by the “hot spots” conjecture of J. Rauch. ∗Supported in part by NSF Grant # 9700585-DMS
منابع مشابه
Asymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملGeometrical Structure of Laplacian Eigenfunctions
We review the properties of eigenvalues and eigenfunctions of the Laplace operator in bounded Euclidean domains with Dirichlet, Neumann or Robin boundary condition. We keep the presentation at a level accessible to scientists from various disciplines ranging from mathematics to physics and computer sciences. The main focus is put onto multiple intricate relations between the shape of a domain a...
متن کاملLaplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis
This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These spectral measures are isometry invariant and therefore allow for shape comparisons with minimal shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The discriminatory po...
متن کاملNeumann Eigenfunctions and Brownian Couplings
This is a review of research on geometric properties of Neumann eigenfunctions related to the “hot spots” conjecture of Jeff Rauch. The paper also presents, in an informal way, some probabilistic techniques used in the proofs.
متن کاملویژه حالتهای ذره در آرایه ششضلعی با شرط مرزی دورهای
In this paper the problem of a particle in an array of hexagons with periodic boundary condition is solved. Using the projection operators, we categorize eigenfunctions corresponding to each of the irreducible representations of the symmetry group . Based on these results, the Dirichlet and Neumann boundary conditions are discussed.
متن کامل